
Storage capacity of a neural network with state-dependent synapses

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 1575

(http://iopscience.iop.org/0305-4470/27/5/021)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 27 (1994) 1575-1583. Printed in the UK 

Storage capacity of a neural network with state-dependent 
synapsest 

F Zertuchet, R L6pezJ and H Waelbroeckz 
t lnstitum de hvestigaciones en Matemiticas Aplicadas y en Sistemas, UNAM, Secci6n 
Cuernavaca, AP 139-8 62191 Cuemavaca. Morelos. Mexico 
$ lnstituto de Ciencias Nuclem&. UNAM. Apdo Postal 70.543, Mexico. DF, 04510 M6xico 

Received 6 July 1993, in final form 19 October 1993 

Abstract The storage capacity of the Hopfield nelwork is limited to p f N  6 (I, = 0.138 
( p  = number of  patterns. N = number of neurons), beyond which the contribution of weakly 
correlated patterns surpasses that of the desired pattern. This conhibution can be eliminated 
by introducing a threshold a pattern wrrelakion below this h’eshold is simply set to zero in 
the synapses. We solve the mean-field equations and derive the critical value of the threshold 
required to stabilize p = a N  patterns with (I > (I~, 

1. Introduction 

The maximal storage capacity of a pattern recognition neural network has been a subject 
of intense research, for its obvious importance in associative memory applications. The 
Hebbian learning scheme of the Hopfield model [I], leads to a maximal storage capacity 
a, = p / N  = 0.138, for a system with p patterns and N neurons [2]. Beyond this value, 
the number of weakly correlated patterns becomes so l&ge that their contribution dominates 
over that of the highly correlated pattern being recalled, and the so-called spurious states 
become the stable attractors. This apparent maximal storage capacity is not an intrinsic 
limit on  neural^ networks, but rather reflects the limitations of the Hebbian learning rule. 
In fact for networks with a general quadratic interaction, replica symmetry techniques give 
the value a, = 2 for the maximal storage capacity [3]. Other variants of the Hopfield 
model have been studied, always giving a, i 2 [ 4 ] .  Further attempts have been made 
to increase the storage capacity and performance of the Hopfield model by taking more 
complex synapses. Gardner has studied a generalization of the Hopfield model which has 
n-interactions among the neurons and has found that a, grows along with n in such a way 
that a, - n / ( 4 l n N )  for n + 00 [5]. In [6] a generalization of Hebb’s rule with state- 
dependent synapses, which turns out to be a special case of Gardner’s networks, has been 
studied. The authors show by means of numerical simulations that the number of spurious 
states is reduced and that the stability of the memorized states is improved, thus suggesting 
that ac should increase. Beyond this, state-dependent synapses are of interest in describing 
some biological phenomena such as habituation and sensitization [7]. Our purpose in this 
article is to study the storage capacity of a state dependent synapses model where there is 
a parameter, the ‘threshold‘, which determines which patterns contribute to the synapses. 

t This work is supported in part by CONACyT grant 400349-5-17148 nnd by the Association GMrale pour la 
Coop6mion et le Developpement (Belgium). 
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Only those pattems whose correlation with the state of the system is greater or equal to the 
threshold are left to give a Hebbian contribution to the synapses. 

In section 2, the Hopfield model is reviewed, as well as the solutions of the mean-field 
equations at zero temperature [2,8]. In section 3, Hebb’s rule is modified by introducing 
the threshold, which makes the synapses state dependent. An energy function is also 
constructed, which is minimized by the deterministic evolution rule of the system (zero 
temperature dynamics). In section 4, the mean-field equations of the model are solved 
by using the statistical method developed in [9,10], the phase space for the memorized 
states is constructed, and the increase in the capacity L Y ~  with the threshold is confirmed 
with a numerical simulation. For large values of the threshold, the information theoretical 
maximum capacity LY = 2 N / N  is attained. In section 5, we give the conclusions. 

2. The Hopfield model 

The study of associative memory was pioneered by Little [ll] and Hopfield [l]. In 
Hopfield’s model, a set of N neurons Si (i = 1,. . . . N )  which can take the values f l  
interact through a synapses matrix Wij. The network evolves by updating one neuron at a 
time in random order with the deterministic rule 

for the zero temperature dynamics (T = 0). or by Glauher dynamics [I21 in the case of 
finite temperature 

I 
$(I + 1) = +l with probability +eFZBh,(f) 

where 

h;(t) = WjSj(t, (3) 
i 

and where ,!3-’ = T is the temperature parameter. The synapses matrix is given by Hebb’s 
rule 

where (Cr = &l)  (p  = 1,. . . , p )  is a set of p patterns generated randomly, such that ((frc,!)) = 6’y6~j ,  where ((. . .)) denotes the average over the distribution of patterns. 
Taking the thermal average of Si by means of (Z), and approximating hi by its thermal 

average, one obtains the so called mean-field equations 

where 

is the correlation of the state S; with the pattern t f ,  and (. . .) denotes the thermal average. 
In [2] the mean-field equations (5) have been solved using replica symmetry techniques. 

For the memorized states, (S,) = (m;O, 0, . . .), the authors obtain solutions for LY < uc = 
0.138, in the zero temperamre limit ,!3 + W. 
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3. State dependent synapses 

The limit on the storage capacity of the Hopfield model is due to the contribution in (5) of 
a large number of weakly correlated patterns, so one could attempt to eliminate the problem 
by introducing a threshold q 2 0 in the synapses (4): 

where the step function 0 ( x )  ensures that the pattern tp  is set to zero if S i  e $ / N .  The 
factor N-' in qz is introduced because the weakly axrelated patterns are statistically of 
order l/n. Note that by setting q = 0, we recover the Hopfield model. 

The energy function 

H = -E 0 - f) (s:(r, - f) 2LL 

tends to be minimized by the evolution rule (1). Indeed, if the i-neuron changes its state as 
a consequence of (l), then 

Si = Si(t + 1) = -S;(r) = sgn (hi@)) (9) 

and the change of H is given by 

A H  = H' - H = A H ,  + AH,  

where 

z N 
AH, -- 0 (s;? - 5) AS; 

2 ,  

with 

It is easy to check that all the terms in the sum (10) are positive, so that AH, < 0 if 
A@& c 0, then S," - qZ/N  e 0 and A8, (S; - q 2 / N )  is positive, and if AOp 0, then 
S z - q 2 / N  > 0, and once again we have a positive term. We must also show that AHs < 0. 
From (9) we have 

so that 
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Substituting in (1 I), one obtains 

Thus the attractors are local minima of the energy (8). 
Averaging Si using (Z), and approximating hi(Sj) by hi((Sj))  one gets the equations 

With this approximation we are going beyond a mean-field treatment in which hi is just 
replaced by (hi) 181: instead we are also passing the thermal average inside the thrshold 
function. To justify this approximation, we note that it is also possible to obtain the equations 
(13) for finite p by calculating the partition function associated to the energy function (8), 
in the saddle point approximation. Although this does not imply that the approximation 
remains valid for p = aN with 01 # 0, we will see later that a numerical simulation leads 
to a critical capacity in agreement with the theoretical predictions. 

4. The memorized states 

The neural network is a useful associative memory device, as long as the mean-field 
equations have solutions of the form (S,) = (m. 0, 0, . . .) in the thermodynamic limit 
(N + CO). Following the statistical method developed by Geszti [91 and Peretto [lo] (see 
also [SI), we take. (SI) = m - O(1) and (S,) - O(l/v%) for U # 1, so that m2 > $ / N .  
Taking /I = U # 1 in (13). separating the term proportional to (S,)O ((S,)’ - $ / N )  and 
expanding in Taylor series to first order, one obtains 

where 

is the sum of a large number (p  > 1) of small terms. We now assume that the small 
correlations (S,), /I # 1 have identical normal disaibutions centred at zero, with variance 
oZ/N.  This is partially justified from (6) and by the central limit theorem (note, however, 
that the (SJ, /I # 1 are not strictly independent variables, since they are related through 
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(13)). By the same arguments i$ is assumed to have a Gaussian distribution with variance 
Lyr and average zero, so that 

a r  = (((vJ)’)) (16) 

and one obtains 

which is the Edwards-Anderson [I31 order parameter. Substituting back (17) in (14) we 
have 

Squaring this expression, using (16) and averaging over the distribution of patterns (here 
and in the following we are taking p - 2 % p ) .  we get 

u ’ + M r = q  (18) 

where 

(19) 

Equation (IS) gives a relation among r and U’. Another relation can be obtained from (16), 
using (15) and averaging over the distribution of patterns: 

2 M = [I- p (1 - q ) ]  - 1. 

so that 

where r is the incomplete gamma function [14]. 

as before, 
Another equation is obtained for m by taking f i  = 1 in (13) and using the same procedure 

In conclusion we have obtained the four equations (17), (IS), (20) and (21) for the four 
unknowns q. r ,  U and m. These must be solved numerically. In the limit p -+ bo, in which 
one recovers the deterministic evolution law (I), q + 1 in such a way that 
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The other equations become 

1 

(1 - C)'+ k 
r =  

l + k  
(1-C)'+k 

2 = 

where 

For q = 0, one has k = 0 and from (22x25) one recovers the equations of the Hopfield 
model at T = 0 [2,8]. On the other hand, for # 0, the equations have a non-trivial 
solution with a > 0.138. In fact, for q >> 1, one can show that the solution always exists 
UP to 

Thus or, --f CO as q -+ CO. This is an analogous situation to that already found by Gardner in 
the case of a neural network which has n interactions among its neurons, when n + 00 151. 
For finite N ,  the maximum storage capacity is given by the information-theoretical limit 

In figure 1 we illustrate the whole phase space spanned by the parameters a, q and 
T; below the surface there are solutions for the memory states (m # 0), and above it the 
network is useless as an associative memory device (m = 0). In figure 2 we show the 
critical l i e  a,(q) at T = 0, with ac = 0.138 at q = 0. m # 0 above this line, and below 
it m = 0. One can see how the storage capacity of the network is improved as the value 
of q is increased. In figure 3 we give a slice of the phase space for 1) vs OL at T = 0.5. 
The critical curve a=(?) has its origin at 0.0587 and the memory solutions are in the region 
above the curve. Once again the capacity increases with q. 

A numerical simulation was canied out using a neural network with N = 100 neurons, 
using 200 sets of a N  patterns generated randomly. The initial state was set equal to the 
first pattern with an error in neuron i, and the network was updated asynchronously 8N. 
At the end, the resulting state was compared with the first pattern; if there was coincidence 
the network was considered stable, and average of this stability was taken on the 200 sets 
of patterns, and on 25 choices of the erroneous neuron i. In figure 4, a plot of the average 
stability vs capacity is displayed for q k 0, 1. The two graphs differ roughly by a translation 
of 0.04. At the stability level of 97% the increase in the capacity of the Hopfield model is 
from 0.14 to 0.17, in agreement with the theoretical calculation. 

p = z .  N 

5. Conclusions 

We have examined a modification of the Hopfield model, where only the patterns whose 
correlation with the state of the system is greater or equal to the threshold are left to give 
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Figure 1. Pha?+ space for the neural network with threshold. The memorized states are stable 
below the critical surface. 

eta 

Figure 2. Slice of the phase space for the neural network with threshold at 
T = 0. The Hopfield value a, = 0.138 is found at il = 0; for a threshold equal to I the 
critical capacity increases to ~ ~ ( 1 )  =0.17. 

a Hebbian contribution to the synapses. We gave an energy function for this model, which 
tends to be minimized by the zero-temperature evolution rule, and reduced the mean-field 
equations to a set of four coupled algebraic equations, by means of a statistical calculation. 
The phase diagram was derived from a numerical solution of these equations; it shows an 
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eta 

Figure 3. Slice of the phase space for the neural network with threshold at T = 0.5. 
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alpha = p/N 

Figure 4. The results of numerical simulations with N = 100 neurons is represented, for the 
Hopfield model (0 = 0) and for a threshold of 1. The avenge stability falls below 97% for 
me = 0.14 without threshold, nnd ac = 0.17 with the threshold. 

increasingly rapid improvement in the storage capacity as a function of the threshold, both 
for T = 0 and for T > 0. 

The increase in storage capacity was confirmed by numerical simulation, for a threshold 
equal to 1, at T = 0. The quantitative agreement with the theoretical predictions indicates 
that the approximations, of passing the thermal average inside the non-linear threshold 
function and later considering the weakly correlated patterns as independent random 
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variables, do not significantly affect the final results. 
An interesting extension of this work is the application of a threshold to time-sequence 

recognition models. A preliminary study indicates that zero-temperature dynamics at large 
storage capacities is characterized by two phase transitions, from no memorized sequences 
at low thresholds, to an unstable sequence, to a stable amacting sequence at large values 
of the threshold. The intermediate phase, where the memorized sequence is unstable, may 
have interesting applications in non-linear dynamics and chaotic time series prediction. 
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